Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Plant Physiol Biochem ; 204: 108145, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37907041

RESUMEN

We recently demonstrated that, under elevated [CO2] (eCa), coffee (Coffea arabica L.) plants grown at high light (HL), but not at low light (LL), display higher stomatal conductance (gs) than at ambient [CO2] (aCa). We then hypothesized that the enhanced gs at eCa/HL, if sustained at the long-term, would lead to adjustments in hydraulic architecture. To test this hypothesis, potted plants of coffee were grown in open-top chambers for 12 months under HL or LL (ca. 9 or 1 mol photons m-2 day-1, respectively); these light treatments were combined with two [CO2] levels (ca. 437 or 705 µmol mol-1, respectively). Under eCa/HL, increased gs was closely accompanied by increases in branch and leaf hydraulic conductances, suggesting a coordinated response between liquid- and vapor-phase water flows throughout the plant. Still under HL, eCa also resulted in increased Huber value (sapwood area-to-total leaf area), sapwood area-to-stem diameter, and root mass-to-total leaf area, thus further improving the water supply to the leaves. Our results demonstrate that Ca is a central player in coffee physiology increasing carbon gain through a close association between stomatal function and an improved hydraulic architecture under HL conditions.


Asunto(s)
Coffea , Estomas de Plantas , Estomas de Plantas/fisiología , Fotosíntesis/fisiología , Dióxido de Carbono , Café , Coffea/fisiología , Hojas de la Planta/fisiología , Agua/fisiología
2.
Plant Biol (Stuttg) ; 25(7): 1101-1108, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37647413

RESUMEN

Worldwide coffee production is threatened by climate change, which highlights the importance of heat tolerance studies. Here we tested the hypothesis that photosynthetic heat tolerance in coffee varieties changes according to acclimation to distinct light conditions. Furthermore, we tested if heat tolerance is associated with the habitat of origin of the coffee species. We evaluated heat tolerance using chlorophyll fluorescence in varieties of Coffea arabica (Mundo Novo and Catuai Amarelo) and C. canephora (Conilon) grown in a common garden under two conditions: high (HS) and low (LS) sunlight. Leaf traits associated with leaf cooling were evaluated in plants grown in LS and HS and associations of heat tolerance with these traits were determined. The varieties tested had high photosynthetic heat tolerance, with temperatures above 54 °C leading to a 50% reduction in Fv /Fm (T50 ). The heat tolerance of each Coffea variety was unaffected by growth in distinct light conditions. Leaves of plants grown in LS were larger and had a lower fraction of the leaf area occupied by stomata (nast ). Heat tolerance was positively associated with leaf size and negatively with nast . C. canephora exhibited higher heat tolerance than C. arabica. The limited plasticity of heat tolerance in response to acclimation under distinct light conditions contradicts the prediction that plants acclimated to HS would have higher photosynthetic heat tolerance than those acclimated to LS. Our results on heat tolerance among Coffea species/varieties in HS and LS indicate the possibility of selection of varieties for better acclimation to ongoing climate changes.


Asunto(s)
Coffea , Termotolerancia , Coffea/fisiología , Café , Fotosíntesis/fisiología , Aclimatación/fisiología
3.
Tree Physiol ; 43(4): 556-574, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36519756

RESUMEN

Coffea canephora (C. canephora) has two botanical varieties, Robusta and Conilon. Intraspecific variability was hypothesized and projected for the selection of C. canephora plants able to maintain production in the context of global climate changes. For that, architectural, C-assimilation and biomass analyses were performed on 17-month-old Robusta (clones 'A1' and '3 V') and Conilon (clones '14' and '19') varieties grown in non-limiting soil, water and mineral nutrient conditions. Nondestructive coffee plant architecture coding, reconstruction and plant photosynthesis estimations were performed using a functional-structural plant modeling platform OpenAlea. 3D reconstructions and inclusion of parameters calculated and estimated from light response curves, such as dark respiration (Rd), maximum rate of carboxylation of RuBisCO and photosynthetic electron transport allowed the estimation of instantaneous and daily plant photosynthesis. The virtual orchard leaf area index was low, and light was not a limiting factor in early C. canephora development stages. Under such conditions, Robusta assimilated more CO2 at the plant and orchard scale and produced higher total biomass than Conilon. Lower plant daily photosynthesis and total biomass were correlated to higher Rd in Conilon than in Robusta. Among the architectural traits, leaf inclination, size and allometry were most highly correlated with plant assimilation and biomass. Relative allocation in leaf biomass was higher in '19' Conilon than in young Robusta plants, indicating intraspecific biomass partitioning. Similarly, variation in relative distribution of the root biomass and the root volume reflected clonal variation in soil occupation, indicating intraspecific variability in space occupation competitiveness. Coffea canephora denoted high root allocation in both Conilon and Robusta clones. However, relevant differences at subspecific levels were found, indicating the high potential of C. canephora to cope with drought events, which are expected to occur more frequently in the future, because of climate changes. The methodology developed here has the potential to be used for other crops and tree species. Highlights Functional-structural plant model was used to estimate photosynthesis on a plant and daily scales in Coffea canephora (C. canephora). Among the architectural traits, leaf shape and inclination had the most impact on photosynthesis and biomass. Under non-limiting conditions, Robusta had higher plant photosynthesis and biomass than Conilon. A higher leaf biomass allocation in Conilon clone '19' than in Robusta suggested variety-specific partitioning. Variation in the relative distribution of the root biomass indicated C. canephora intraspecific soil occupation variability.


Asunto(s)
Coffea , Coffea/fisiología , Biomasa , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Transporte de Electrón
4.
J Plant Physiol ; 276: 153788, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35944291

RESUMEN

As drought threatens crop productivity it is crucial to characterize the defense mechanisms against water deficit and unveil their interaction with the expected rise in the air [CO2]. For that, plants of Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu grown under 380 (aCO2) or 700 µL L-1 (eCO2) were exposed to moderate (MWD) and severe (SWD) water deficits. Responses were characterized through the activity and/or abundance of a selected set of proteins associated with antioxidative (e.g., Violaxanthin de-epoxidase, Superoxide dismutase, Ascorbate peroxidases, Monodehydroascorbate reductase), energy/sugar (e.g., Ferredoxin-NADP reductase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, sucrose synthase, mannose-6-phosphate isomerase, Enolase), and lipid (Lineolate 13S-lipoxygenase) processes, as well as with other antioxidative (ascorbate) and protective (HSP70) molecules. MWD caused small changes in both genotypes regardless of [CO2] level while under the single imposition to SWD, only Icatu showed a global reinforcement of most studied proteins supporting its tolerance to drought. eCO2 alone did not promote remarkable changes but strengthened a robust multi-response under SWD, even supporting the reversion of impacts already observed by CL153 at aCO2. In the context of climate changes where water constraints and [CO2] levels are expected to increase, these results highlight why eCO2 might have an important role in improving drought tolerance in Coffea species.


Asunto(s)
Coffea , Aclimatación/genética , Antioxidantes/metabolismo , Carbohidratos , Dióxido de Carbono/metabolismo , Coffea/fisiología , Sequías , Lípidos , Proteómica , Azúcares/metabolismo , Agua/metabolismo
5.
Nat Plants ; 7(4): 413-418, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33875832

RESUMEN

There are numerous factors to consider when developing climate-resilient coffee crops, including the ability to tolerate altered climatic conditions, meet agronomic and value chain criteria, and satisfy consumer preferences for flavour (aroma and taste). We evaluated the sensory characteristics and key environmental requirements for the enigmatic narrow-leaved coffee (Coffea stenophylla), a wild species from Upper West Africa1. We confirm historical reports of a superior flavour1-3 and uniquely, and remarkably, reveal a sensory profile analogous to high-quality Arabica coffee. We demonstrate that this species grows and crops under the same range of key climatic conditions as (sensorially inferior) robusta and Liberica coffee4-9 and at a mean annual temperature 6.2-6.8 °C higher than Arabica coffee, even under equivalent rainfall conditions. This species substantially broadens the climate envelope for high-quality coffee and could provide an important resource for the development of climate-resilient coffee crop plants.


Asunto(s)
Coffea/fisiología , Café/química , Productos Agrícolas/fisiología , Percepción del Gusto , Gusto , África Occidental , Calor
6.
Sci Rep ; 11(1): 7436, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795742

RESUMEN

The aim of this study was to identify the correlation between photochemical efficiency and candidate genes expression to elucidate the drought tolerance mechanisms in coffee progenies (Icatu Vermelho IAC 3851-2 × Catimor UFV 1602-215) previously identified as tolerant in field conditions. Four progenies (2, 5, 12 and 15) were evaluated under water-deficit conditions (water deficit imposed 8 months after transplanting seedlings to the pots) and under irrigated system. Evaluations of physiological parameters and expression of candidate genes for drought tolerance were performed. Progeny 5 showed capacity to maintain water potential, which contributed to lower qP variation between irrigated and deficit conditions. However, the increases of qN and NPQ in response to stress indicate that this progeny is photochemically responsive to small variations of Ψam protecting the photosystem and maintaining qP. Data obtained for progeny 12 indicated a lower water status maintenance capacity, but with increased qN and NPQ providing maintenance of the ɸPSII and ETR parameters. A PCA analysis revealed that the genes coding regulatory proteins, ABA-synthesis, cellular protectors, isoforms of ascorbate peroxidase clearly displayed a major response to drought stress and discriminated the progenies 5 and 12 which showed a better photochemical response. The genes CaMYB1, CaERF017, CaEDR2, CaNCED, CaAPX1, CaAPX5, CaGolS3, CaDHN1 and CaPYL8a were up-regulated in the arabica coffee progenies with greater photochemical efficiency under deficit and therefore contributing to efficiency of the photosynthesis in drought tolerant progenies.


Asunto(s)
Coffea/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Estrés Fisiológico/genética , Adaptación Biológica , Perfilación de la Expresión Génica , Fenómenos Fisiológicos de las Plantas , Factores de Tiempo
7.
J Plant Physiol ; 258-259: 153355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33581558

RESUMEN

Knowing the key hydraulic traits of different genotypes at early seedling stages can potentially provide crucial information and save time for breeding programs. In the current study we investigated: (1) how root, stem and whole plant conductivities are linked to xylem traits, and (2) how the integrated hydraulic system impacts leaf water potential, gas exchange, chlorophyll a fluorescence and the growth of three coffee cultivars (clones of Coffea canephora Pierre ex Froehner cv. Conilon) with known differences in drought tolerance. The Conilon clones CL 14, CL 5 V and CL 109A, classified as tolerant, moderately tolerant, and sensitive to drought respectively, were grown under non-limiting soil-water supply but high atmospheric demand (i.e., high VPDair). CL 14 and CL 5 V displayed higher root and stem hydraulic conductance and conductivity, and higher whole plant conductivity than CL 109A, and these differences were associated with higher root growth traits. In addition, CL 109A exhibited a non-significant trend towards wider vessels. Collectively, these responses likely contributed to reduce leaf water potential in CL 109A, and in turn, reduced leaf gas exchange, especially during elevated VPDair. Even when grown under well-watered conditions, the elevated VPDair observed during this study resulted in key differences in the hydraulic traits between the cultivars corresponding to differences in plant water status, gas exchange, and photochemical activity. Together these results suggest that coffee hydraulic traits, even when grown under non-water stress conditions, can be considered in breeding programs targeting more productive and efficient genotypes under drought and high atmospheric demand.


Asunto(s)
Coffea/fisiología , Sequías , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Tallos de la Planta/fisiología , Fenómenos Biomecánicos , Clorofila A/fisiología , Coffea/crecimiento & desarrollo , Fluorescencia , Agua/fisiología
8.
Plant Cell Physiol ; 62(2): 280-292, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33377945

RESUMEN

Detecting processes of local adaptation in forest trees and identifying environmental selective drivers are of primary importance for forest management and conservation. Transplant experiments, functional genomics and population genomics are complementary tools to efficiently characterize heritable phenotypic traits and to decipher the genetic bases of adaptive traits. Using an integrative approach combining phenotypic assessment in common garden, transcriptomics and landscape genomics, we investigated leaf adaptive traits in Coffea mauritiana, a forest tree endemic to Reunion Island. Eight populations of C. mauritiana originating from sites with contrasted environmental conditions were sampled in common garden to assess several leaf morphological traits, to analyze the leaf transcriptome and leaf cuticular wax composition. The relative alkane content of cuticular waxes was significantly correlated with major climatic gradients, paving the way for further transcriptome-based analyses. The expression pattern of cuticle biosynthetic genes was consistent with a modulation of alkane accumulation across the population studied, supporting the hypothesis that the composition of cuticular wax is involved in the local adaptation of C. mauritiana. Association tests in landscape genomics performed using RNA-seq-derived single-nucleotide polymorphisms revealed that genes associated with cell wall remodeling also likely play an adaptive role. By combining these different approaches, this study efficiently identified local adaptation processes in a non-model species. Our results provide the first evidence for local adaptation in trees endemic to Reunion Island and highlight the importance of cuticle composition for the adaptation of trees to the high evaporative demand in warm climates.


Asunto(s)
Coffea/fisiología , Árboles/fisiología , Adaptación Fisiológica/fisiología , Cambio Climático , Coffea/genética , Bosques , Estudio de Asociación del Genoma Completo , Genómica , Hojas de la Planta/fisiología , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Reunión , Árboles/genética
9.
Ecotoxicol Environ Saf ; 203: 111016, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888590

RESUMEN

Selenium (Se) is considered a beneficial element to higher plants based on its regulation of antioxidative system under abiotic or biotic stresses. However, the limit of beneficial and toxic physiological effects of Se is very narrow. In the present study, the antioxidant performance, nutritional composition, long-distance transport of Se, photosynthetic pigments, and growth of Coffea arabica genotypes in response to Se concentration in solution were evaluated. Five Coffea arabica genotypes (Obatã, IPR99, IAC125, IPR100 and Catucaí) were used, which were grown in the absence and presence of Se (0 and 1.0 mmol L-1) in nutrient solution. The application of 1 mmol L-1 Se promoted root browning in all genotypes. There were no visual symptoms of leaf toxicity, but there was a reduction in the concentration of phosphorus and sulfur in the shoots of plants exposed to high Se concentration. Except for genotype Obatã, the coffee seedlings presented strategies for regulating Se uptake by reducing long-distance transport of Se from roots to shoots. The concentrations of total chlorophyll, total pheophytin, and carotenoids were negatively affected in genotypes Obatã, IPR99, and IAC125 upon exposure to Se at 1 mmol L-1. H2O2 production was reduced in genotypes IPR99, IPR100, and IAC125 upon exposure to Se, resulting in lower activity of superoxide dismutase (SOD), and catalase (CAT). These results suggest that antioxidant metabolism was effective in regulating oxidative stress in plants treated with Se. The increase in sucrose, and decrease in SOD, CAT and ascorbate peroxidase (APX) activities, as well as Se compartmentalization in the roots, were the main biochemical and physiological modulatory effects of coffee seedlings under stress conditions due to excess of Se.


Asunto(s)
Antioxidantes/metabolismo , Coffea/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Coffea/genética , Coffea/metabolismo , Coffea/fisiología , Genotipo , Oxidación-Reducción , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Plantones/fisiología , Selenio/análisis , Selenio/metabolismo , Especificidad de la Especie
10.
Neotrop Entomol ; 49(4): 501-510, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32691402

RESUMEN

Studies in crop plants analyzing floral biology in conjunction with effectiveness and efficiency of pollinators on pollen transfer and fruit formation are not common, although they are essential to provide better management actions. On this base, we selected a farm in Bahia, Brazil, to study pollination on coffee plants (Coffea arabica L.). Specifically, we want to analyze if nectar traits influence visitor's performance throughout flower lifetime and if honeybees (Apis mellifera scutellata Lepeletier, 1836) are effective and efficient for coffee pollination comparing fertilization and fructification among four experimental treatments: open (OP), wind (WP), cross (HCP), and single-visit bee pollination (SVBP). We found that honeybees collect both nectar and pollen from coffee flowers and transfer pollen on stigmas even after one visit. No differences were found among treatments regarding the number of pollen grains transferred on the stigmas (effectiveness). OP flowers showed a comparative lower efficiency (pollen tubes and fruit set) probably due to pollination failure as those flowers have a higher variability on the number of deposited pollen grains. Two of the treatments (HCP and SVBP) showed higher fertilization (measuring tubes until the end of the style). Pollen loads seem to be limited by a peak of pollen transference by pollinators, followed by the stabilization in the number of pollen grains deposited per stigma. Thus, reproduction of the coffee can be limited by the quality of pollen grains moved by pollinators instead of quantity. Management strategies should focus on monitoring bee density on plants for increasing pollen quality transfer on flowers trough maintaining the adequate proportions of seminatural habitats and/or the number of hives on agricultural fields according to the flowering of the crop.


Asunto(s)
Abejas/fisiología , Coffea/fisiología , Polinización , Animales , Brasil , Productos Agrícolas , Flores , Polen
11.
BMC Plant Biol ; 20(1): 24, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941456

RESUMEN

BACKGROUND: It is now well documented that moonlight affects the life cycle of invertebrates, birds, reptiles, and mammals. The lunisolar tide is also well-known to alter plant growth and development. However, although plants are known to be very photosensitive, few studies have been undertaken to explore the effect of moonlight on plant physiology. RESULTS: Here for the first time we report a massive transcriptional modification in Coffea arabica genes under full moonlight conditions, particularly at full moon zenith and 3 h later. Among the 3387 deregulated genes found in our study, the main core clock genes were affected. CONCLUSIONS: Moonlight also negatively influenced many genes involved in photosynthesis, chlorophyll biosynthesis and chloroplast machinery at the end of the night, suggesting that the full moon has a negative effect on primary photosynthetic machinery at dawn. Moreover, full moonlight promotes the transcription of major rhythmic redox genes and many heat shock proteins, suggesting that moonlight is perceived as stress. We confirmed this huge impact of weak light (less than 6 lx) on the transcription of circadian clock genes in controlled conditions mimicking full moonlight.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Coffea/fisiología , Luz , Luna , Coffea/genética , Fotosíntesis/genética
12.
Int J Mol Sci ; 20(21)2019 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-31717779

RESUMEN

This report presents an efficient protocol of the stable genetic transformation of coffee plants expressing the Cry10Aa protein of Bacillus thuringiensis. Embryogenic cell lines with a high potential of propagation, somatic embryo maturation, and germination were used. Gene expression analysis of cytokinin signaling, homedomains, auxin responsive factor, and the master regulators of somatic embryogenesis genes involved in somatic embryo maturation were evaluated. Plasmid pMDC85 containing the cry10Aa gene was introduced into a Typica cultivar of C. arabica L. by biobalistic transformation. Transformation efficiency of 16.7% was achieved, according to the number of embryogenic aggregates and transgenic lines developed. Stable transformation was proven by hygromycin-resistant embryogenic lines, green fluorescent protein (GFP) expression, quantitative analyses of Cry10Aa by mass spectrometry, Western blot, ELISA, and Southern blot analyses. Cry10Aa showed variable expression levels in somatic embryos and the leaf tissue of transgenic plants, ranging from 76% to 90% of coverage of the protein by mass spectrometry and from 3.25 to 13.88 µg/g fresh tissue, with ELISA. qPCR-based 2-ΔΔCt trials revealed high transcription levels of cry10Aa in somatic embryos and leaf tissue. This is the first report about the stable transformation and expression of the Cry10Aa protein in coffee plants with the potential for controlling the coffee berry borer.


Asunto(s)
Proteínas Bacterianas/genética , Coffea/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente , Sustitución de Aminoácidos/genética , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Coffea/fisiología , Café/genética , Escarabajos/crecimiento & desarrollo , Endotoxinas/metabolismo , Endotoxinas/toxicidad , Germinación , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidad , Técnicas de Embriogénesis Somática de Plantas/métodos , Semillas/metabolismo , Transformación Genética
13.
Environ Sci Pollut Res Int ; 26(29): 30356-30364, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31432374

RESUMEN

The potencial of Coffea arabica leaves as bioindicators of atmospheric carbon dioxide (CO2) was evaluated in a free-air carbon dioxide enrichment (FACE) experiment by using near-infrared reflectance (NIR) spectroscopy for direct analysis and partial least squares discriminant analysis (PLS-DA). A supervised classification model was built and validated from the spectra of coffee leaves grown under elevated and current CO2 levels. PLS-DA allowed correct test set classification of 92% of the elevated-CO2 level leaves and 100% of the current-CO2 level leaves. The spectral bands accounting for the discrimination of the elevated-CO2 leaves were at 1657 and 1698 nm, as indicated by the variable importance in the projection (VIP) score together with the regression coefficients. Seven months after suspension of enriched CO2, returning to current-CO2 levels, new spectral measurements were made and subjected to PLS-DA analysis. The predictive model correctly classified all leaves as grown under current-CO2 levels. The fingerprints suggest that after suspension of elevated-CO2, the spectral changes observed previously disappeared. The recovery could be triggered by two reasons: the relief of the stress stimulus or the perception of a return of favorable conditions. In addition, the results demonstrate that NIR spectroscopy can provide a rapid, nondestructive, and environmentally friendly method for biomonitoring leaves suffering environmental modification. Finally, C. arabica leaves associated with NIR and mathematical models have the potential to become a good biomonitoring system.


Asunto(s)
Dióxido de Carbono , Coffea/química , Coffea/fisiología , Atmósfera , Monitoreo Biológico/métodos , Monitoreo Biológico/estadística & datos numéricos , Dióxido de Carbono/análisis , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Modelos Biológicos , Hojas de la Planta , Espectroscopía Infrarroja Corta/estadística & datos numéricos
14.
New Phytol ; 224(2): 974-986, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291469

RESUMEN

Past climatic fluctuations have played a major role in shaping the current plant biodiversity. Although harbouring an exceptional biota, oceanic islands have received little attention in studies on species demographic history and past vegetation patterns. We investigated the impact of past climatic changes on the effective population size of a tree (Coffea mauritiana) that is endemic to Reunion Island, located in the south-western Indian Ocean (SWIO). Demographic changes were inferred using summary statistics calculated from genomic data. Using ecological niche modelling and the current distribution of genetic diversity, the paleodistribution of the species was also assessed. A reduction in the effective population size of C. mauritiana during the last glaciation maximum was inferred. The distribution of the species was reduced on the western side of the island, due to low rainfall. It appeared that a major reduction in rainfall and a slight temperature decrease prevailed in the SWIO. Our findings indicated that analyses on the current patterns of intraspecific genetic variations can efficiently contribute to past climatic changes characterisation in remote islands. Identifying area with higher resilience in oceanic islands could provide guidance in forest management and conservation faced to the global climate change.


Asunto(s)
Evolución Biológica , Cambio Climático , Coffea/genética , Coffea/fisiología , Modelos Biológicos , Océanos y Mares , Polimorfismo de Nucleótido Simple , Dinámica Poblacional , Reunión
15.
An Acad Bras Cienc ; 91(2): e20180191, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31038532

RESUMEN

Roasting is a determinative operation on the final quality of coffee. Roasting process causes physical, chemical and sensory changes on coffee. In this study roasting degree effect on physical properties of Arabica fine ground coffee was examined. The bulk properties, particle property, reconstitution properties, moisture content, water activities and color properties were investigated in different roasting degrees of coffee. The results showed that the physical characteristics of coffee samples were influenced by the degree of roast. To have longer shelf life, lower cost and better physical attributes of Arabica fine ground coffee, the roasting process should be kept at a lower degree. At the same time the requests and expectations of customer should also be considered.


Asunto(s)
Coffea/química , Coffea/fisiología , Manipulación de Alimentos/métodos , Semillas/química , Semillas/fisiología , Café/química , Color , Calor , Valores de Referencia , Solubilidad , Humectabilidad
16.
Sci Adv ; 5(1): eaav3473, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30746478

RESUMEN

Wild coffee species are critical for coffee crop development and, thus, for sustainability of global coffee production. Despite this fact, the extinction risk and conservation priority status of the world's coffee species are poorly known. Applying IUCN Red List of Threatened Species criteria to all (124) wild coffee species, we undertook a gap analysis for germplasm collections and protected areas and devised a crop wild relative (CWR) priority system. We found that at least 60% of all coffee species are threatened with extinction, 45% are not held in any germplasm collection, and 28% are not known to occur in any protected area. Existing conservation measures, including those for key coffee CWRs, are inadequate. We propose that wild coffee species are extinction sensitive, especially in an era of accelerated climatic change.


Asunto(s)
Coffea/fisiología , Especies en Peligro de Extinción , Extinción Biológica , Etiopía , Banco de Semillas , Desarrollo Sostenible
17.
Int J Mol Sci ; 20(3)2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30744144

RESUMEN

In a context where climate change is threatening coffee productivity, the management of coffee leaf rust is a challenging issue. Major resistant genes, which have been used for many years, are systematically being overcome by pathogens. Developing healthy plants, able to defend themselves and be productive even when attacked by the pathogen, should be part of a more sustainable alternative approach. We compared one hybrid (GPFA124), selected for its good health in various environments including a reduced rust incidence, and the cv. 'Caturra', considered as a standard in terms of productivity and quality but highly susceptible to rust, for phenotypic variables and for the expression of genes involved in the circadian clock and in primary photosynthetic metabolism. The GPFA124 hybrid showed increased photosynthetic electron transport efficiency, better carbon partitioning, and higher chlorophyll content. A strong relationship exists between chlorophyll a fluorescence and the expression of genes related to the photosynthetic electron transport chain. We also showed an alteration of the amplitude of circadian clock genes in the clone. Our work also indicated that increased photosynthetic electron transport efficiency is related to the clone's better performance. Chlorophyll a fluorescence measurement is a good indicator of the coffee tree's physiological status for the breeder. We suggest a connection between the circadian clock and carbon metabolism in coffee tree.


Asunto(s)
Relojes Circadianos , Coffea/fisiología , Fotosíntesis , Carbono , Clorofila/metabolismo , Relojes Circadianos/genética , Transporte de Electrón , Perfilación de la Expresión Génica , Vigor Híbrido/genética , Endogamia , Redes y Vías Metabólicas , Modelos Biológicos , Fotosíntesis/genética , Fitomejoramiento , Transcriptoma
18.
Glob Chang Biol ; 25(2): 390-403, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30650240

RESUMEN

Arabica coffee (Coffea arabica) is a key crop in many tropical countries and globally provides an export value of over US$13 billion per year. Wild Arabica coffee is of fundamental importance for the global coffee sector and of direct importance within Ethiopia, as a source of harvestable income and planting stock. Published studies show that climate change is projected to have a substantial negative influence on the current suitable growing areas for indigenous Arabica in Ethiopia and South Sudan. Here we use all available future projections for the species based on multiple general circulation models (GCMs), emission scenarios, and migration scenarios, to predict changes in Extent of Occurrence (EOO), Area of Occupancy (AOO), and population numbers for wild Arabica coffee. Under climate change our results show that population numbers could reduce by 50% or more (with a few models showing over 80%) by 2088. EOO and AOO are projected to decline by around 30% in many cases. Furthermore, present-day models compared to the near future (2038), show a reduction for EOO of over 40% (with a few cases over 50%), although EOO should be treated with caution due to its sensitivity to outlying occurrences. When applying these metrics to extinction risk, we show that the determination of generation length is critical. When applying the International Union for Conservation of Nature's Red list of Threatened Species (IUCN Red List) criteria, even with a very conservative generation length of 21 years, wild Arabica coffee is assessed as Threatened with extinction (placed in the Endangered category) under a broad range of climate change projections, if no interventions are made. Importantly, if we do not include climate change in our assessment, Arabica coffee is assessed as Least Concern (not threatened) when applying the IUCN Red List criteria.


Asunto(s)
Cambio Climático , Coffea/fisiología , Especies en Peligro de Extinción , Extinción Biológica , Dispersión de las Plantas , Modelos Biológicos , Medición de Riesgo
19.
Plant Physiol Biochem ; 135: 160-166, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30553137

RESUMEN

A greenhouse study comparing the physiological responses and uptake of coffee (Coffea arabica L.) plants to foliar applications of zinc sulfate (ZnSO4) and zinc nano-fertilizer (ZnO NPs) was conducted with the aim to understand their effects on plant physiology. One-year old coffee plants were grown in greenhouse conditions and treated with two foliar applications of 10 mg/L of Zn as either zinc sulfate monohydrate (ZnSO4 ‧ H2O) or zinc oxide nanoparticle (ZnO NPs 20% w/t) and compared to untreated control plants over the course of 45 days. ZnO NPs positively affected the fresh weight and dry weight (FW and DW) of roots and leaves, increasing the FW by 37% (root) and 95% (leaves) when compared to control. The DW increase was 28%, 85%, and 20% in roots, stems, and leaves, respectively. The net photosynthetic rate increased 55% in response to ZnO NPs treatment at the end of experiment when compared to control. ZnO NPs-treated leaves contained significantly higher amounts of Zn (1267.1 ±â€¯367.2 mg/kg DW) when compared to ZnSO4-treated plants (344.1 ±â€¯106.2 mg/kg DW), while control plants had the lowest Zn content in the leaf tissue (53.6 ±â€¯18.9 mg/kg DW). X-ray micro-analyses maps demonstrated the increased penetrance of ZnO NPs in coffee leaf tissue. Overall, ZnO NPs had a more positive impact on coffee growth and physiology than conventional Zn salts, which was most likely due to their increased ability to be absorbed by the leaf. These results indicate that the application of ZnO NPs could be considered for coffee systems to improve fruit set and quality, especially in areas where Zn deficiency is high.


Asunto(s)
Coffea/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Sulfato de Zinc/farmacología , Zinc/farmacología , Clorofila/metabolismo , Coffea/crecimiento & desarrollo , Coffea/fisiología , Nanopartículas del Metal , Microscopía Electrónica de Rastreo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/ultraestructura , Transpiración de Plantas/efectos de los fármacos , Zinc/administración & dosificación , Zinc/metabolismo , Sulfato de Zinc/administración & dosificación , Sulfato de Zinc/metabolismo
20.
PLoS One ; 13(6): e0198694, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29870563

RESUMEN

The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided.


Asunto(s)
Aclimatación/fisiología , Coffea/fisiología , Respuesta al Choque por Frío/fisiología , Estrés Oxidativo/fisiología , Agricultura/métodos , Frío/efectos adversos , Sequías , Genotipo , Fotosíntesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...